聚氯乙烯早在1835年就为美国V.勒尼奥发现,用日光照射氯乙烯时生成一种白色固体,即聚氯乙烯。优质PVC挤出颗粒在19世纪被发现过两次,一次是Henri Victor Regnault在1835年,另一次是Eugen Baumann在1872年发现的。两次机会中,佛山PVC挤出颗粒都出现在被放置在太阳光底下的氯乙烯的烧杯中,成为白色固体。20世纪初,俄国化学家Ivan Ostromislensky和德国Griesheim-Elektron公司的化学家Fritz Klatte同时尝试将PVC用于商业用途,但困难的是如何加工这种坚硬的,有时脆性的的聚合物。1926年,美国B.F. Goodrich公司的Waldo Semon合成了PVC并在美国申请了zhuanli。Waldo Semon和B.F. Goodrich Company在1926年开发了利用加入各种助剂塑化PVC的方法,使它成为更柔韧更易加工的材料并很快得到广泛的商业应用。
聚氯乙烯有较好的电气绝缘性能,可作低频绝缘材料,其化学稳定性也好。佛山PVC挤出颗粒的电性能取决于聚合物中残留物的数量、配方中各种添加物的类型和数量。PVC的电性能还与受热情况有关:当加热使PVC分解时,由于氯离子的存在而降低其电绝缘性,如果产生大量的氯离子不能为碱性稳定剂(如铅盐)所中和,则会导致其电绝缘性能明显下降。优质PVC挤出颗粒不象聚乙烯、聚丙烯这类聚合物,它的电性能随频率和温度而变,如介电常数随频率升高而降低。选择无机颜料着色PVC对其电气绝缘性较有机颜料为好(除炉黑、锐钛型二氧化钛外)。
聚氯乙烯树脂系无定型结构的热塑性塑料。在紫外光下,硬质PVC颗粒产生浅蓝或紫白色的荧光,软质PVC颗粒则发出蓝色或蓝白色的荧光。温度在20℃时折光率为1.544,比重为1.40,而加有增塑剂及填料的制品密度通常在1.15~2.00范围内,软质PVC泡沫塑料密度为0.08~0.48,硬质泡沫塑料为0.03~0.08。佛山PVC挤出颗粒吸水率不大于0.5%。树脂分子量愈大,则机械性能、耐寒性、热稳定性愈高,但加工温度也要求高,成型比较困难;分子量低则与上述相反。填料含量增多,抗拉强度降低。优质PVC挤出颗粒对这些加工要求都是有实际的数据可参考的。
木塑颗粒的制造包括树脂过筛、增塑剂过滤、粉末状添加剂磨浆、色母料粉的配制原材料干燥、块状添加剂的加热熔化等工序。佛山PVC挤出颗粒为防止混入机械杂质或其他杂质,为防止损坏造粒设备和降低产品质量,优质PVC挤出颗粒要过筛后使用,粉末聚氯乙烯一般采用40目的筛网,颗粒状聚乙烯或聚丙烯过筛,可用比树脂粒径稍大的细丝网过筛。木粉通常用的是杨木粉,松木粉和竹粉。部分也用稻壳谷物壳。目数一般在80目-120目。选择木粉重要的是的水分和灰分的控制。加料的不稳定会导致挤出波动现象,造成挤出质量和产量降低。加料中断,物料在机筒内停留时间延长,导致物料烧焦变色,影响制品的内在质量和外观。
在我们的生活中,佛山PVC挤出颗粒电线电缆料随处可见,但是如果保存不当的话就会使得产品受潮,那么受潮的PVC电线电缆料该怎么处理呢?受潮的电缆料经过简单烘干处理,去除其中的水分,一般都可正常使用。但有些受潮的电缆料烘干后,优质PVC挤出颗粒受潮现象虽有所好转,但很快又会恢复原状。其根本原因不是它的受潮,而是由于潜在降解和表面附层等造成的PVC电缆料的部分降解。当然其中有的也有受潮的成分。这种电缆料成型时的表现与实际受潮的PVC电缆料成型中的表现十分相似。
生产PVC时的助剂主要有热稳定体系、冲击改性剂、润滑系统、加工改性剂、填料等。其中,热稳定系统的选择要根据实际生产的要求,更要注意热稳定剂之间的协同效应和对抗效应。优质PVC挤出颗粒冲击改性剂一般选择CPE和ACR冲击改性剂,根据生产配方中其它成分和挤出机塑化能力,适当加入8-12份即可,其中,CPE来源广泛、价格低,ACR焊角强度和耐老化能力较高。佛山PVC挤出颗粒润滑系统能降低加工机械负荷,使产品光滑,但过量会导致焊角强度下降。加工改性剂可以帮助提高塑化质量,对制品外观有一定改进作用。